
 

Multiobjective Krill Herd Algorithm for Electromagne tic Optimization  

Metaheuristics have recently become the forefront of the current research as a powerful way to deal with many electromagnetic 
optimization problems. Based on the simulation of the herding behavior of krill individuals, a krill h erd (KH) algorithm was recently 
proposed to solve optimization problems. In order to extend the classical mono-objective KH algorithm approach, this paper proposes 
a new multiobjective KH (MKH) algorithm and a modif ied MKH approach using the beta distribution in the inertia weight tuning. 
Numerical results on a multiobjective constrained brushless direct current (DC) motor design problem show that the evaluated MKH 
algorithms present a promising performance. 

  
Index Terms— Optimization, brushless DC motor design, krill herd algorithm, multiobjective optimization.  

 

I. INTRODUCTION 

ECENTLY, Gandomi and Alavi [1] proposed the krill 
herd (KH) algorithm, which is based on the simulation of 

the herding behavior of krill individuals in nature. In KH, the 
objective function for the krill movement is determined by the 
minimum distances of each individual krill from food and 
from highest density of the herd. KH has shown promising 
results when applied to single-objective global optimization 
problems [2], [3]. Yet, the KH can be extended to solve 
multiobjective optimization problems (MOPs). Unlike a 
single-objective optimization problem, a MOP does not, in 
general, have a unique optimal solution. Instead, the optimal 
solutions to a MOP constitute possibly an infinite set of 
compromise solutions, known as Pareto optimal solutions or 
non-dominated solutions, which can be ordered only by 
subjective preferences. 

By extending the basic ideas for single-objective 
optimization of KH, a multiobjective KH (MKH) approach 
and a modified MKH using beta distribution in the inertia 
weight tuning are proposed in this paper to increase the 
solutions convergence and the population diversity. A 
brushless direct current (DC) wheel motor benchmark problem 
[4], [5] is used to investigate the performance of the MKH and 
the modified MKH approaches. 

II. FUNDAMENTALS OF THE KRILL HERD APPROACHES 

In KH, the time-dependent position of the krill individuals 
is formulated by three main factors: (i) motion induced, (ii) 
foraging motion, and (iii) physical diffusion. The motion for a 
krill individual is induced from other krill. The foraging 
motion is formulated in terms of two main effective 
parameters. The first is the food location and the second one is 
the previous experience about the food location. In KH, the 
virtual center of food concentration is approximately 
calculated according to the fitness distribution of the krill 
individuals, which is inspired from “center of mass”. 

In the present work an adaptation of the original KH 
algorithm as described above is proposed, in order to cope 
with more than one and possibly conflicting objectives. The 
aim is to accomplish the goals in multiobjective optimization 

such as convergence and approximation to approximate the 
true Pareto front, as well as diversify its solutions in such way 
that at the end of each run the engineer has representative 
solutions for the problem at hand. 

Being so, it was employed a truncation procedure as in the 
NSGA-II (Nondominated Sorting Genetic Algorithm - version 
II) [4] and the global best individual selection as in MOPSO-
CD (Multiobjective Particle Swarm Optimization with 
Crowding Distance) [5]. In the truncation procedure, at the 
end of each iteration both the parent and child populations of 
krill are combined and sorted according to the non-inferiority 
and crowding distance criteria. The solutions are kept 
according to this ranking. In order to choose the global best 
krill, we use the same ranking and choose randomly among 
the 10% best ranked krill. Thus, krill which explore a 
nondominated and less populated region are given more 
chance to influence the other along the iterations of the 
algorithm. The procedure for implementing the MOKH can be 
summarized as the pseudo code shown in Fig. 1. 

The use of the beta probability distribution [6] can be 
useful to preserve diversity and helps to explore hidden areas 
in the search space. In MOKH approach (p>0), the p∈[0,1] is 
related to the percentage p of the classical update of inertia 
weights utilization and (1-p) of the utilization of the beta 
probability distribution in the inertia weights  tuning. The 
classical update of inertia weights (ωn and ωf) adopted both 
0.9 at beginning and linearly decreased to 0.1. 
 
Generate and evaluate the initial population krill 
Initialize the iteration 
While the termination criterion iteration  < Maxiteration  is not satisfied 
   For � = 1: (population size of krills) do 
       Perform the following motion calculation 
       Motion induced by the presence of other individuals 
       Foraging motion and physical diffusion 
       Implement the genetic operators 
       Update the krill individual position in the search space 
   End for 
   Assign each krill a rank equal to its nondomination level 
   Insert nondominated krills into the external archive 
   iteration = iteration + 1 
EndWhile 
Postprocess the optimization results 
Fig. 1. Pseudo code of the MOKH. 
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III.  BRUSHLESS DC MOTOR DESIGN 

A brushless DC wheel motor benchmark was presented in 
[7] and the code for computing the objective function is 
publicly available [8]. 

The problem is characterized by five continuous design 
variables (see Table I) subject to six inequality constraints 
which are related to technological, operational and 
considerations regarding the wheel motor. Here, the objectives 
are the minimization of f1=1-η, where η is the efficiency, and 
f2=Mtot, where Mtot is the total mass, which has the constraint 
Mtot ≤ 15 kg. 

The MOKH approaches must be supplemented with a 
mechanism to efficiently handle constraints. In this paper, a 
third objective function f3 to be minimized related to the 
number of infeasible constraints are adopted in the 
optimization procedure. 

IV.  NUMERICAL EXPERIMENTS 

Different MOKH are compared on the brushless DC motor 
optimization problem. In all 30 experiments were used the 
same parameters for MOKH approaches, namely the 
population size of 30 krill, an external archive of 200 krill, and 
a stopping criterion of 6,000 function evaluations in each run. 
Furthermore, it was adopted the foraging speed Vf=0.02, the 
maximum induced speed Nmax=0.01, and the maximum and 
minimum diffusion speeds of Dmax=0.01 and Dmin=0.002. 

Results for 30 runs are shown in Tables II, III and IV, 
while Fig. 2 shows the obtained Pareto fronts. According to 
the simulation results, the MOKH (p=0.5) presented promising 
results in terms of spacing, number of solutions in the Pareto 
front and Euclidian distances (see results in bold in Table II). 

TABLE I 
OPTIMIZATION VARIABLES AND SEARCH RANGE 

Variable Meaning Minimum  
value 

Maximum  
value 

Ds [m] Bore (stator) diameter 0.15 0.33 
Be [T] Air gap induction 0.50 0.76 

δ [A/m2] Conductor current density 2.0E6 5.0E6 

Bd [T] Teeth magnetic induction 0.9 1.8 

Bcs [T]  Stator back iron induction 0.6 1.6 

V. CONCLUSION 

For MOPs, evolutionary and swarm intelligence 
algorithms in general have demonstrated to be effective and 
efficient tools for finding approximations of the Pareto front. 
In this paper, the MOKH algorithms with different p values 
are compared to solve the brushless DC motor benchmark 
problem. The proposed MOKH approaches provided good 
results in terms of mean values (30 runs) of spacing and 
normalized Euclidean distances. Future research will focus on 
MOKH with mechanisms to hold the diversity of the 
population when applied to electromagnetic optimization. 
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TABLE II 

SPACING AND EUCLIDEAN DISTANCES INDICES (30 RUNS)  
FOR THE FEASIBLE SOLUTIONS (f3 = 0) USING MOKH 

p PF* ED# SP% 
0 63 1.5934 0.0353 

0.1 87 1.3851 0.0243 
0.2 73 1.4900 0.0352 
0.3 65 1.5630 0.0423 
0.4 71 1.5186 0.0298 
0.5 97 1.3128 0.0226 
0.6 79 1.4485 0.0228 
0.7 90 1.3397 0.0191 
0.8 80 1.4292 0.0269 
0.9 83 1.3884 0.0305 
1 83 1.4030 0.0244 

* PF: Pareto front (filtered  of 30 runs). #  ED: Normalized Euclidean distance 
(f1, f2) until the origin. % SP: Normalized spacing between the  (f1, f2) values(.) 
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Fig. 2. Pareto set points (filtered of 30 runs) using MOKH approaches. 

 
TABLE III 

RESULTS IN TERMS OF DECISION VARIABLES FOR MOKH (P = 0) 
Indices Ds [m] Be [T] δ [A/m2] Bd [T] Bcs [T] 

1Best Mtot 0.1919 0.6580 3.9728E6 1.7710 1.5943 
2Best 1-η 0.2020 0.6599 2.0128E6 1.7995 1.1688 
3MeanOF 0.1799 0.6734 2.8138E6 1.7980 1.5215 
1 Mtot = 10.5858 and 1-η = 0.0551; 2 Mtot = 14.8804 and 1-η = 0.0472;  

3 Mtot = 11.6188 and 1-η = 0.0550. 
 

TABLE IV 
RESULTS IN TERMS OF DECISION VARIABLES FOR MOKH (P = 0.5) 
Indices Ds [m] Be [T] δ [A/m2] Bd [T] Bcs [T] 

1Best Mtot 0.1921 0.6521 3.9242E6 1.7987 1.5971 
2Best 1-η 0.2010 0.6497 2.0135E6 1.7841 0.9979 
3MeanOF 1.7972 0.6628 2.8029E6 1.7927 1.4588 

1 Mtot = 10.6297 and 1-η = 0.06693; 2 Mtot = 14.9726 and 1-η = 0.04696; 
3 Mtot = 11.5791 and 1-η = 0.0550. 

 


